ROCK1 Induces Endothelial-to-Mesenchymal Transition in Glomeruli to Aggravate Albuminuria in Diabetic Nephropathy
نویسندگان
چکیده
Endothelial-to-mesenchymal transition (EndMT) can cause loss of tight junctions, which in glomeruli are associated with albuminuria. Here we evaluated the role of EndMT in the development of albuminuria in diabetic nephropathy (DN). We demonstrated that EndMT occurs in the glomerular endothelium of patients with DN, showing by a decrease in CD31 but an increase in α-SMA expression. In glomeruli of db/db mice, there was an increased ROCK1 expression in the endothelium plus a decreased CD31-positive cells. Cultured glomerular endothelial cells (GEnCs) underwent EndMT when stimulated by 30 mM glucose, and exhibited increased permeability. Meanwhile, they showed a higher ROCK1 expression and activation. Notably, inhibition of ROCK1 largely blocked EndMT and the increase in endothelial permeability under this high-glucose condition. In contrast, overexpression of ROCK1 induced these changes. Consistent alterations were observed in vivo that treating db/db mice with the ROCK1 inhibitor, fasudil, substantially suppressed the expression of α-SMA in the glomerular endothelium, and reduced albuminuria. Thus we conclude that ROCK1 is induced by high glucose and it stimulates EndMT, resulting in increased endothelial permeability. Inhibition of ROCK1 could be a therapeutic strategy for preventing glomerular endothelial dysfunction and albuminuria in developing DN.
منابع مشابه
Simvastatin Alleviates Hyperpermeability of Glomerular Endothelial Cells in Early-Stage Diabetic Nephropathy by Inhibition of RhoA/ROCK1
BACKGROUND Endothelial dysfunction is an early sign of diabetic cardiovascular disease and may contribute to progressive diabetic nephropathy (DN). There is increasing evidence that dysfunction of the endothelial tight junction is a crucial step in the development of endothelial hyperpermeability, but it is unknown whether this occurs in glomerular endothelial cells (GEnCs) during the progressi...
متن کاملLovastatin Alleviates Endothelial-to-Mesenchymal Transition in Glomeruli via Suppression of Oxidative Stress and TGF-β1 Signaling
Statins may decrease chronic kidney diseases (CKDs) risk, but their underlying molecular mechanisms are not completely understood. Recent studies indicate Endothelial-to-mesenchymal transition (EndMT) plays an important role contributing to renal interstitial fibrosis. In the present study, we first investigated whether lovastatin could ameliorate renal fibrosis via suppression of EndMT and its...
متن کاملThe lectin-like domain of thrombomodulin ameliorates diabetic glomerulopathy via complement inhibition.
Coagulation and complement regulators belong to two interactive systems constituting emerging mechanisms of diabetic nephropathy. Thrombomodulin (TM) regulates both coagulation and complement activation, in part through discrete domains. TM's lectin like domain dampens complement activation, while its EGF-like domains independently enhance activation of the anti-coagulant and cytoprotective ser...
متن کاملAntiangiogenic Therapy for Diabetic Nephropathy
Angiogenesis has been shown to be a potential therapeutic target for early stages of diabetic nephropathy in a number of animal experiments. Vascular endothelial growth factor (VEGF) is the main mediator for abnormal angiogenesis in diabetic glomeruli. Although beneficial effects of anti-VEGF antibodies have previously been demonstrated in diabetic animal experiments, recent basic and clinical ...
متن کاملIncubation of glomeruli from non-diabetic BAMBI
1 BAMBI acts as a pseudoreceptor for the TGFβ type I receptor family and negative modulator of TGFβ kinase 2 signaling and BAMBI-/-mice show mild endothelial dysfunction. As diabetic glomerular disease is associated 3 with TGFβ overexpression and microvascular alterations, we examined the effect of diabetes on glomerular 4 BAMBI mRNA levels. In isolated glomeruli from biopsies of patients with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016